

Mark Scheme (Results)

January 2013

International GCSE Mathematics A (4MA0) Paper 3H

Level 1 / Level 2 Certificate in Mathematics (KMA0) Paper 3H

#### Edex cel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <a href="https://www.edexcel.com">www.edexcel.com</a> or <a href="https://www.btec.co.uk">www.btec.co.uk</a> for our BTEC qualifications.

Alternatively, you can get in touch with us using the details on our contact us page at <a href="https://www.edexcel.com/contactus">www.edexcel.com/contactus</a>.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson. Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at <a href="www.edexcel.com/ask">www.edexcel.com/ask</a>. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2013
Publications Code UG034739
All the material in this publication is copyright
© Pearson Education Ltd 2013

# General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
  - Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
  - o M marks: method marks
  - o A marks: accuracy marks
  - o B marks: unconditional accuracy marks (independent of M marks)
- Abbreviations
  - o cao correct answer only
  - o ft follow through
  - isw ignore subsequent working
  - o SC special case
  - o oe or equivalent (and appropriate)
  - o dep dependent
  - o indep independent
  - o eeoo each error or omission
- No working

If no working is shown then correct answers normally score full marks
If no working is shown then incorrect (even though nearly correct)
answers score no marks.

### • With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.

If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

If there is no answer on the answer line then check the working for an obvious answer.

### Follow through marks

Follow through marks which involve a single stage calculation can be awarded without working since you can check the answer yourself, but if ambiguous do not award.

Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

### • Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

## Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

| Q              | Working                                | Answer                                                                                                | Mark | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------|----------------------------------------|-------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>1.</b> (a)  | 1 - (0.18 + 0.2 + 0.23 + 0.22)         |                                                                                                       | _    | M1 1 – 0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                |                                        | 0.17                                                                                                  | 2    | A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>1.</b> (b)  | 40 x 0.2                               |                                                                                                       |      | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                |                                        | 8                                                                                                     | 2    | A1 8 out of $40 = M1A1 8/40 = M1A0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                |                                        |                                                                                                       |      | Total 4 marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>2.</b> (i)  |                                        | $2x + 2(x+2) = 2 \times 2x + 2 \times 4x$ or $4x + 4 = 12x$ or $x + (x+2) = 2x + 4x$ or $2x + 2 = 6x$ | 2    | B2 Must be an equation based on perimeter or semi-perimeter with <i>x</i> 's on both sides of equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2. (ii)        | 4x + 4 = 12x                           |                                                                                                       |      | If not B2 then B1 for $\{2x+2(x+2)\}$ or $\{2x+2x+2x+4x\}$<br>or $\{4x+4\}$ or $\{2x+2\}$ i.e correct perimeter of A or B<br>or $\{x+(x+2)\}$ or $\{2x+4x\}$<br>or $\{2x+2\}$ or $\{x+2\}$ or $\{x+3\}$ or $\{x+4\}$ or |
| <b>2.</b> (11) | or $2x + 2 = 6x$<br>4 = 8x or $2 = 4x$ |                                                                                                       |      | M1 One step from co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                |                                        | 0.5                                                                                                   | 2    | A1 Allow numerical methods. Correct answer only = M1A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

Total 4 marks

| <b>3.</b> (a) | 45/625 x 100                                                                     |         |   | M1         |                 |                          |
|---------------|----------------------------------------------------------------------------------|---------|---|------------|-----------------|--------------------------|
|               |                                                                                  | 7.2     | 2 | <b>A</b> 1 |                 |                          |
| <b>3.</b> (b) | 8/100 x 45 (= 3.6)                                                               |         |   | M1         |                 | or M2 for 45 x 1.08      |
|               | 45 + "3.6"                                                                       |         |   | M1 d       | ер              |                          |
|               |                                                                                  | 48.6(0) | 3 | A1         |                 |                          |
| <b>3.</b> (c) | 640 – 625 (= 15)                                                                 |         |   | M1         | 640/625 (=      | 625/640 (= 0.976 or      |
|               | "15" / 625 or "15" / 640                                                         |         |   | M1         | 1.024)          | 0.977)                   |
|               |                                                                                  | 2.4     | 3 | dep        | "1.024" – 1     | 1 – "0.976" (=           |
|               |                                                                                  |         |   | A1         | (=0.024)        | 0.0234)                  |
| <b>3.</b> (d) | $18 \div 1  1/3 \text{ or } 18 \div 1.33 \text{ (2dp or better) or } 18 \div 80$ | 0       |   | M2         | M1 for          | r 1 1/3 or 18 ÷1.2 (=15) |
|               |                                                                                  |         |   |            | or 18 ÷ 1.3 (13 | .8) or 18 ÷ 80 (=0.225)  |
|               |                                                                                  | 13.5    | 3 | A1 ca      | no              |                          |
|               |                                                                                  |         |   |            | ·               | Total 11 marks           |

| <b>4.</b> (a) | Q correct |   | B3 Bottom LH corner goes to (4, -2)                       |
|---------------|-----------|---|-----------------------------------------------------------|
|               |           |   | If not B3 then B2 for correct size T shape in             |
|               |           |   | wrong position but with correct orientation               |
|               |           |   | If not B2 then B1 for T shape with 2 or more              |
|               |           | 3 | sides of correct length and correct orientation           |
| <b>4.</b> (b) | R correct |   | B2 Bottom LH corner goes to (-11,3)                       |
|               |           | 2 | If not B2 then B1 for rotation of $\pm 90^{\circ}$ (wrong |
|               |           |   | position)                                                 |
|               |           |   | Total 5 marks                                             |

|    |                     |                |   | Total 3 marks                                                                     |
|----|---------------------|----------------|---|-----------------------------------------------------------------------------------|
|    |                     | x = -1.5 y = 3 | 3 | equation and one unknown.  A1 A1 dep on M1 awarded otherwise M0A0                 |
| 5. | 2y = 6  or  4x = -6 |                |   | M1 Adding or subtracting correctly or correct substitution leading to one correct |

| <b>6.</b> (a)            |                                                                                                       |              | $25 < d \le 30$   | 1 | B1 identifies $25 \rightarrow 30$ class                                                                                                                                                                                                                                 |
|--------------------------|-------------------------------------------------------------------------------------------------------|--------------|-------------------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 22.                      | 2 x 2.5) + (6 x 7.5) + (4 x 12.5) + (6 x 1<br>2.5) + (18 x 27.5)<br>stals: 30, 45, 50, 105, 315, 495) | 7.5) + (14 x | 1040              | 3 | If not M2 then M1 for freq x consistent interval value (890 = freq x lower limit, 1190 = freq x upper limit)  or 3 or more correct products stated or evaluated  A1 isw if 1040 calculated correctly and correct mean calculation follows (1040 ÷ 60 = 17.3 or better)  |
|                          |                                                                                                       |              |                   |   | Total 4 marks                                                                                                                                                                                                                                                           |
| 7. (ii) -2               |                                                                                                       |              | $-4 < x \le 3$    | 2 | M1 condone omission/addition of "equals" in inequalities A1cao accept $x > -4$ and $x \le 3$ (both present)  B2 ft ft for an inequality where range lies between $-5$ and $+5$ If not B2ft then B1ft for correct values but wrong shading of end circles  Total 4 marks |
|                          |                                                                                                       |              |                   |   |                                                                                                                                                                                                                                                                         |
| 8. (a) 7.9<br>8. (b) (i) | 9 x cos 38° or 7.9 x sin 52°                                                                          |              | 6.23<br>37.5      | 3 | M2 M1 for cos 38° or sin 52° selected<br>A1 6.2252 awrt 6.23<br>B1                                                                                                                                                                                                      |
| <b>8.</b> (b)(ii)        |                                                                                                       |              | 38.5 or 38.49 rec | 1 | B1                                                                                                                                                                                                                                                                      |
|                          |                                                                                                       |              |                   |   | Total 5 marks                                                                                                                                                                                                                                                           |

| 0 (a)         |                                                                                  | Mora            | 1 | D1 Account $6.9 \times 10^3$ acc                   |
|---------------|----------------------------------------------------------------------------------|-----------------|---|----------------------------------------------------|
| <b>9.</b> (a) | 1.2 1.05 5.0 1.04 5.00.00                                                        | Mars            | 1 | B1 Accept 6.8 x 10 <sup>3</sup> oe                 |
| <b>9.</b> (b) | $1.2 \times 10^5 - 5.0 \times 10^4 \text{ or } 70000$                            | <b>-</b> 101    |   | M1 Correct values with intention to subtract       |
|               |                                                                                  | $7 \times 10^4$ | 2 | A1 M1 A0 for 70000 with no working                 |
| <b>9.</b> (c) | $(1.4 \times 10^6) \div (3.5 \times 10^3)$                                       |                 |   | M1 Correct values with intention to divide         |
|               |                                                                                  | 1:400 oe        | 2 | A1 M1 A0 for 400 or 400:1 with no working          |
|               |                                                                                  |                 |   | Total 5 marks                                      |
|               |                                                                                  |                 | • | ·                                                  |
| 10.           | Correct $v \div h$                                                               |                 |   | M1 e.g. $6 \div 4$                                 |
| (a)           |                                                                                  | 1.5 oe          | 2 | A1 accept improper fractions (e.g 3/2)             |
|               |                                                                                  |                 |   | N.B. 1.5x = M1A0                                   |
| 10.           |                                                                                  | y = 1.5x - 10e  | 1 | B1 ft from (a)                                     |
| (b)           |                                                                                  |                 |   |                                                    |
| 10.           | y = "1.5" $x + c$ oe or "1.5" $x + 3$                                            |                 |   | M1ft from (a) $c \neq -1$ (c must be a numeric     |
| (c)           | or $0 = -2$ x gradient from (a) + c                                              |                 |   | value)                                             |
|               |                                                                                  | y = 1.5x + c oe | 2 | (substituting $y = 0$ and $x = -2$ into $y = mx +$ |
|               |                                                                                  | y 1.5 % • 6 oc  | _ | c)                                                 |
|               |                                                                                  |                 |   | A1ft "c" = follow through using numeric            |
|               |                                                                                  |                 |   | value of gradient in (a)                           |
|               |                                                                                  |                 |   | value of gradient in (a)                           |
|               |                                                                                  | <u> </u>        |   | Total 5 marks                                      |
|               |                                                                                  |                 | I |                                                    |
| 11.           | 21-17(=04)                                                                       |                 |   | M1                                                 |
| 111           | $\begin{vmatrix} 2.1 - 1.7 & (= 0.4) \\ 6^2 + 0.4^{2} & (= 36.16) \end{vmatrix}$ |                 |   | M1 dep                                             |
|               | √"36.16"                                                                         |                 |   | M1 dep                                             |
|               | 7 30.10                                                                          | 6.01            | 4 | A1 awrt 6.01                                       |
|               |                                                                                  | 0.01            | 7 |                                                    |
|               |                                                                                  |                 |   | N.B. Accept working in cms throughout for          |
| -             |                                                                                  |                 |   | method marks                                       |
|               |                                                                                  |                 |   | Total 4 marks                                      |

| 12.            | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |   | M1 Correct first step                                              |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---|--------------------------------------------------------------------|
| 12.            | $\frac{A}{2\pi r} = r + h \text{ or } A = 2\pi r^2 + 2\pi rh$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A                                     |   | 1                                                                  |
|                | and the state of t | $\frac{A}{2\pi r} - r = h \text{ oe}$ | 2 | A1 e.g. $\frac{A-2\pi r^2}{2\pi r}$ Give full credit to equivalent |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |   | correct expressions                                                |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |   | Total 2 marks                                                      |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |   |                                                                    |
| <b>13.</b> (i) | 5 x 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |   | M1 Or any correct fd marked on vertical axis                       |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |   | (2, 4 etc) with no errors                                          |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40                                    | 2 | or 1 square = 4 students                                           |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |   | Al                                                                 |
| 13.            | Missing blocks = 5cm, 6cm, 1.5cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | 2 | B2 3 correct blocks                                                |
| (ii)           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |   | If not B2 then B1 for 1 or 2 correct blocks                        |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |   | Total 4 marks                                                      |

| <b>14.</b> (a) | Black circle = 0.3 White region = 0.6 All values "correct" for second shot                                                                      |        | 3 | B1 B1 B1ft Allow ft if each group of 3 branches on second arrow all sum to 1 and are consistent                                                              |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>14.</b> (b) | Any one correct product in numerical form e.g. ("0.3" x 0.1) or (0.1 x "0.3") or ("0.6" x "0.6")  ("0.3"x 0.1) + (0.1x "0.3") + ("0.6" x "0.6") | 0.42oe | 3 | with first arrow branches  M1ft e.g. (Black, Miss) or (Miss, Black) or (White, White)  M1ft 3 "correct" products with intention to add A1 cao  Total 6 marks |

|                |                                                                     |                                   | 1 | 7                                     |
|----------------|---------------------------------------------------------------------|-----------------------------------|---|---------------------------------------|
| <b>15.</b> (i) |                                                                     | 18                                | 1 | B1                                    |
| 15.            |                                                                     | 15                                | 1 | B1                                    |
| (ii)           |                                                                     |                                   |   |                                       |
| 15.            |                                                                     | 9                                 | 1 | B1                                    |
| (iii)          |                                                                     |                                   | 1 |                                       |
| 15.            |                                                                     | 22                                | 1 | B1                                    |
| (iv)           |                                                                     |                                   | 1 | Di                                    |
| (11)           |                                                                     |                                   |   | Total 4 marks                         |
| 16.            | $7^2 = 9^2 + 13^2 - 2 \times 9 \times 13 \cos x$ oe                 |                                   | l | M1                                    |
| 10.            | $7 - 9 + 13 - 2 \times 9 \times 13 \cos x$ 0e<br>234 $\cos x = 201$ |                                   |   | M1 or $\cos x = 0.86$ or better       |
|                | $234 \cos x - 201$                                                  | 20.0                              | 2 |                                       |
|                |                                                                     | 30.8                              | 3 | A1 30.798 awrt 30.8                   |
|                |                                                                     |                                   |   | Total 3 marks                         |
| 17.            | $\frac{(2x-5)(2x+5)}{(2x+5)(3x-1)}$                                 |                                   |   | M2 If not M2 then M1 for numerator or |
|                | $\frac{1}{(2x+5)(3x-1)}$                                            |                                   |   | denominator correct                   |
|                | (2x + 5)(5x - 1)                                                    | (2x-5)                            | 3 |                                       |
|                |                                                                     | $\frac{\sqrt{3x-1}}{\sqrt{3x-1}}$ |   | A1                                    |
|                |                                                                     | <u> </u>                          |   | Total 3 marks                         |
|                |                                                                     |                                   |   |                                       |
| 18.            |                                                                     | 16 <i>x</i>                       | 1 | B1                                    |
| (a) (i)        |                                                                     |                                   |   |                                       |
| 18.            | $2x^{-1}$                                                           |                                   |   | M1                                    |
| (a)            |                                                                     | $-2 x^{-2}$ oe                    | 2 | A1                                    |
| (a)<br>(ii)    |                                                                     |                                   |   |                                       |
| 18.            | " $16x$ " + " $-2/x^2$ " = 0                                        |                                   |   | M1                                    |
| (b)            | $16x = 2/x^2$                                                       |                                   |   |                                       |
| ( )            | $\begin{vmatrix} 16x = 2/x^2 \\ x^3 = 1/8 \end{vmatrix}$            |                                   |   | M1 $x^3$ isolated                     |
|                | $x = \frac{1}{2}$                                                   |                                   |   |                                       |
|                |                                                                     | $(\frac{1}{2}, 6)$                | 4 | A1, A1                                |
|                |                                                                     | (,-)                              | İ | Total 7 marks                         |
|                | l .                                                                 | L                                 |   | 2002. 1101                            |

| <b>19.</b> (a) | $2 \times 3 \times x = (x+10)(3x+20)$<br>or $6x^2 = (x+10)(3x+20)$ |        |   | M2 If not M2 then M1 for 2 x 3x x x or 2 x $3x^2$ or $6x^2$ or $(x + 10)(3x + 20)$                                                           |
|----------------|--------------------------------------------------------------------|--------|---|----------------------------------------------------------------------------------------------------------------------------------------------|
|                | $6x^2 = 3x^2 + 50x + 200$                                          |        | 3 | A1 Dependent on at least M1                                                                                                                  |
| <b>19.</b> (b) | (3x+10)(x-20) (=0)                                                 |        |   | M2 or $x = \frac{50 \pm \sqrt{2500 + 2400}}{6}$                                                                                              |
|                | Marks can be awarded in b) if seen in a)                           |        |   | If not M2 then M1 for $(3x \pm 10)(x \pm 20)$<br>or $x = \frac{-50 \pm \sqrt{-50^2 - 4x3x - 200}}{2x^2 + 2x^2 + 2x^2 + 2x^2}$ condone 1 sign |
|                |                                                                    |        |   | or $x = \frac{-50 \pm \sqrt{-50^{\circ} - 433 \pi - 200}}{2 \times 3}$ condone 1 sign error                                                  |
|                | 20 x 3 x 20                                                        | x = 20 |   | A1 dep on M1 in b). Ignore negative root ( –                                                                                                 |
|                |                                                                    | 1200   | 5 | 3.3 rec)                                                                                                                                     |
|                |                                                                    |        |   | M1 A1 dep on 1 <sup>st</sup> M1 in b)                                                                                                        |
|                |                                                                    |        |   | Total 8 marks                                                                                                                                |

| 20      |                                                                                                                                                                          |                               | 1 | D1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20.     |                                                                                                                                                                          | 2 <b>a</b> oe                 | 1 | B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (a) (i) |                                                                                                                                                                          |                               |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 20.     |                                                                                                                                                                          | $2\mathbf{a} + \mathbf{b}$ oe | 1 | B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (a)     |                                                                                                                                                                          |                               |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (ii)    |                                                                                                                                                                          |                               |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 20.     |                                                                                                                                                                          | $-\mathbf{a} + \mathbf{b}$ oe | 1 | B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (a)     |                                                                                                                                                                          |                               |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (iii)   |                                                                                                                                                                          |                               |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 20.     | _ <b>_</b>                                                                                                                                                               |                               |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (b)     | $PN = \mathbf{a} + 1/3 \ ("-\mathbf{a} + \mathbf{b}")$                                                                                                                   |                               |   | M1ft from (a)(iii) i.e. a valid path from P to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         | $\overrightarrow{PN} = \mathbf{a} + 1/3 \ ("-\mathbf{a} + \mathbf{b}")$<br>$\overrightarrow{PN} = 2\mathbf{a}/3 + \mathbf{b}/3 \ \{= 1/3 \ (2\mathbf{a} + \mathbf{b})\}$ |                               |   | N, or N to P, using lower case letters.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         | $117 - 2a/3 + b/3 \left( -1/3 \left( 2a + b \right) \right)$                                                                                                             |                               |   | 3, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2, 52 2 |
|         |                                                                                                                                                                          | stating $PN = PR/3$           | 2 | A1 Arrows not necessary. Dependent on M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         | <b>&gt;</b>                                                                                                                                                              |                               |   | Alt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         | NR = 2/3 ("-a + b") + 2a                                                                                                                                                 |                               |   | M1ft from (a)(iii) i.e. a valid path from N to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         | NR = 2/3 ("- <b>a</b> + <b>b</b> ") + 2 <b>a</b><br>$NR = 4\mathbf{a}/3 + 2\mathbf{b}/3 $ {= 2/3 (2 <b>a</b> + <b>b</b> )}                                               |                               |   | R, or R to N, using lower case letters.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         | 1411 - 1415 (2015 ( 215 (24 · 6))                                                                                                                                        | $\rightarrow$ $\rightarrow$   |   | , · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         |                                                                                                                                                                          | stating $NR = 2PR/3$          |   | A1 Arrows not necessary. Dependent on M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         |                                                                                                                                                                          |                               |   | The first was not not sound.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         |                                                                                                                                                                          |                               |   | NB: If both PN and NR worked out correctly,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         |                                                                                                                                                                          |                               |   | award M1 A 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         |                                                                                                                                                                          |                               |   | award M1A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |                                                                                                                                                                          |                               |   | for stating $2PN = NR$ or stating or showing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         |                                                                                                                                                                          |                               |   | PN + NR = PR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         |                                                                                                                                                                          |                               |   | Total 5 marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| 21. | $\sqrt{(16^2 + 10^2)}$ (=18.9 or better)<br>"18.867" ÷ 2 (=9.433)<br>tan "x" = 15/ "9.433" |      |   | M1 or M2 for $\sqrt{(8^2 + 5^2)}$ (=9.43 or better)<br>M1 dep on previous M1<br>M1 dep on M2 |
|-----|--------------------------------------------------------------------------------------------|------|---|----------------------------------------------------------------------------------------------|
|     | tan x = 13/ 7.433                                                                          | 57.8 | 4 | A1 57.832 awrt 57.8                                                                          |
|     |                                                                                            |      |   | Total 4 marks                                                                                |
|     |                                                                                            |      |   | TOTAL = 100 marks                                                                            |

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467
Fax 01623 450481
Email <u>publication.orders@edexcel.com</u>
Order Code UG034739 January 2013

For more information on Edexcel qualifications, please visit our website  $\underline{www.edexcel.com}$ 

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE





